5,921 research outputs found

    Ground controlled robotic assembly operations for Space Station Freedom

    Get PDF
    A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities

    Land use, state and local users

    Get PDF
    The state and local and land use sessions involved a cross section of the expanding community of government managers who use remotely sensed information to make programmatic decisions. Problems that can be inferred from the presentations and resulting discussion are addressed. Recommendations are also given to facilitate utilization of remote sensing technology

    An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    Get PDF
    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated

    Editor’s Notes: Service

    Get PDF

    Letter from Lillian C. Parrish to Ann Hopkins, January 19, 1990

    Get PDF

    Editor\u27s Notes: Pages From The Past

    Get PDF

    Editor\u27s Notes: Changes Proposed by the AICPA

    Get PDF
    • …
    corecore